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Asymptotic Behavior of the Spectra of RF Pulses

with Linear Frequency Modulation

Abstrac‘t

The asymptotic spectra of wide-band radio frequency pulses with
linear frequency modulation are evaluated. It is specifically shown that at
frequencies {measured from the carrier frequency) much larger than the
maximum FM deviation the effect of the FM 1s small In particular. at a
frequency 50 rmc higher than the carrier frequency, the envelope of the spectrum
of a 10 psec rectangular pulse with a 10 mc FM deviation is less than 1% above
the envelope of the spectrum of a pulse with no FM. The spectrum of a cosine

pulse with these same characteristics is increased by less than 3%.

Introduction

It may sometimes be necessary toc operate two or more closely spaced
pulse compression radar transmitters simultaneously’ To avoid interference
each radar transmits at carrier frequencies sufficiently far from all other
receiver bands to insure a minimum noise level for each receiver. The
optimum design depends on a knowledge of the asymptotic spectral density of
each signal transmitted

Spectral densities of simple RF pulse shvapes are not difficult to calcu-
late However introduction of a wide-band linear frequency modulation makes
these calculations considerably more difficult 1t 1s often assumed that cor-
rections to the spectrum are negligible at the frequency deviations of interest,
i e, 50to 100 mc from the carrier frequency

An evaluation of spec‘tral densities including the effects of wide-band

linear FM 1s presented here. The method used 1s first explainéd fér the



relatively simple case of a rectangular pulse envelope By analytically

extending the signal into the complex plane, the contour - - =t = + %— on

the real time-axis (where T 1is the pulse duration) can be deformed to a new

contour for which the Fourier transform is easily bounded. An upper bound >

for the spec£rum is then readily obtained. It is further shown that the true
spectrum is very close to th'is upper bound

Following the treatment of the rectangular pulse, the method is ex-
tended to the case of a cosine pulse of the same time duration. In the absence
of linear FM, a cosine pulse more closely approximates a realistic spectrum
(asymptotic Zlf-—z- dependence) since there are no zero rise-times. A general
continuous, }()ieczewise linear pulse shape is treated in Appendix A Here one
again determines an upper bound for the spectrum which in the absence of FM
reduces to the correct result. The result has been applied to the case of a
symmetric trapezoidal pulse envelope.

In each example considered, it has been found that the linear FM in-
creases the spectral density by only a few per cent at a frequency five FM
deviations from the carrier freq'ucncy, the effect diminishes as zlf—z- for a
further increase in Af. One may thus conclude that under these(cil)‘cumstances

neglecting linear FM in a calculation of the spectral density at these frequencies

1s a good approximation

Rectangular Pulse Envelope

The spectrum (one-sided) of a rectangular pulse of unit height and

duration T, centered at t = 0, with complex RF carrier fo is

smw‘rr AfT (1)

G(Af) - _T ’



where Af =1f - fo. Tlhe spectrum of the same rectangular pulse with linear

FM is given by

T /2 5
S LBt -i2TAft

1l

G(Af, )
S 2
[ 2
1/2 -iZWIAfo-E—E—sz 172 .
T e L dx=TSe_1 P ax (2)

-1/2 | -1/2

i

2 .
where p is the rate of change of frequency in cycles/(sec)". Primary interest

is in the behavior of G(Af,p) at frequencies large enough so that

Af >> uT >>’11" ;

1. e., Af is much larger than the bandwidth of the pulse with linear FM, which
1s in turn much larger than the bandwidth of t.he pulse without FM. Note that
pT is the total frequency deviation due to FM during the pulse.

By completing the square in the exponent, the above integral can be
evaluated in terms of the difference of two Fresnel integrals of large argument
Accurate tabulation of the Fresnel integrals at the large arguments required
are not available; furthermore, generalization to other pulse shapes is not
immediately obvious.* The integral will here be evaluated by the method of
steepest descent. * Generalization to other pulse shapes is then readily

available. Let z be a complex variable; the analytic continuation of @(x) 1is

*A geometrical evaluation of the Fresnel integral for large argument has been
performed by E. B. Temple, M. 1. T. Lincoln Laboratory, Personal Com-
munication

+See, for example, A. Erdelyi, Asymptotic Expansions, Dover, 1956




plz) = AfTz - %pTzzZ (3)

One must then find contours in the z-plane on which the phase of the integrand
is a slowly varying function. For z = x + iy 1n (3),
2 2

Re {(p}: AfTx - -IZ-uTZ(x -v9)

2
Im {q;} = AfTy - pT " xy
Contours for which Im {907( = const satisfy the equation

AfTx - %HTZ(XZ - yZ) = const.

or
2
y - {x - —&) = const
e

and are therefore hyperbolas, the two asymptotes have slopes £1 and inter -

sect the x-ax1s at x = 2B 1
w T
Since the integrand 1s an analytic function of z, the contour may be
deformed by integrating to mfinity along the hyperbola passing through
z = -1/2. and then back along the hyperbola passing through z = 1/2 (See

Fig. 1 The contour shown s for £4f >0 )

LT - MT
On Co' (letting o - —A—f-)
X‘—}—(l-\/(l+%)2+')‘2y2) dx _ 1Y
Y dy 2 2 2.
(1+'Z) tvy vy

Im@ = AfTy W/(l +%—)Z+y y

Reg ~g(-g) = - =5 (1+3)
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Thus the contribution to the integral of the contour C

ge-iZTr(Re(p +ilm@)
C

o}

_iZTTQD(--é-)_E*O ATy N/(ﬁl+ :YZ-)Z + 'Yzy
= e e

21

o}

is
|
|
|
|
|

1. % 2, 2 2
-2m (- ) S2uAfTy (1 +5) +v y
(i vy ) dy - -e Z ge A s '
2‘ .
‘/(1+ +'y y 0
(i + — -) dy
%1+3Z)2+7 y
Similarly, on C1
A dx Ty
q/(l-z hewy e v.2,.2 2
(1-5)"+77y
Im @ = AfTy (1-%)2“‘2 <
1, A
Reg - o(5) - 250 (1-1)

The contribution from C1 is

Se-iZTr(Regp + iIm @) dz - o

(i - > = )dy
(1-%) tY oy

(i + Y - ) dy
\ﬁl-%) +7°y
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Thus
G(Af, p) = GO(Af, B + Gl(Af, B)

where

..izw(.i_) ~ -ZTrAny4/(1 - YZ)Z+ yzyz
G_(Af,p) = iTe g(e

o

_ZnAny%l + %)2 + G
e ) dy

and

2 2 2
—Z'rrAnylﬁl—-}) +v%y

-i2mg(3) j?( .

2 i
o ‘/1—-}) + ‘}'Zyz

-2mAfTy 4 /(1 + -})2 + 'yzyz
e

/ﬁ+%)2 +y2y?

Gl(Af,p) = Te

) Yy dy

12TAfT
e

12TAfT
e

Both |GO(Af, p)| and IGI(Af, p)l attain their maximum values at the fre-

Zntl =0,1,2 © . Thus the envelopes of each

i N *

quencies Afn s o for n

are:

X _2mAfTy [-%)2+72y2
|G (atml, , = TS(e
O

——
_2mAfTy J(l +l})2 $ PRt
+ e ) dY B




4

) -Z'rrAny]/(l = %—)2 + ’yZyZ

_ e
IC"I(Af’l'l)lenv. —TS‘(- > ——
_2TAfTy qﬂ1+YZ)Z+ ¥yt
+ 2 ) vy dy

1

2 2 2
1/(1+%—) + vy

Since envelopes for GO(Af,p) and Gl(Af, p) are attained simultaneously for
the same Af  (and IGl(Af,p)lenv. < IGO(Af,p)Ienv. for v < 1), it immediately

follows that (lower bound = 1.b., upper bound = u. b.)

IC"O(Af’p)ll.b.env. B IGl(Af"'l)I = IC"(Af’p')lenv.

u. b. env.

= |G (af, )] +|Gyagp| (4)

u. b. env. u. b. env,

Using inequalities (B-1), (B-2), and (B-4) of Appendix B, one obtains

® -ZTrAny(l-%) -21rAny(l+%)
|G (A, =T g(e +e ) dy
(o)
ol 1 1
Z7 OT (1 7yt 1+7)
"7 ]

and

3
Ll - )
TAf TALfT

C . omaiT 1/1+~2 :
|G (Af, p)| = ZTSe' Telty rY gy =

env.
(e}

Using inequality (B-1) and




IA

2 2 2 I = %
/‘/(l:l:%) +v v z

one further obtains

3 2
1 0% 1+Z’Y
Gl = 557 (k) ( 2 7)
(-2
Thus
3
1 73 ‘7(1+;-7 ) _
TAT nAfT 72 3 IG(Af’ I‘l)lenv,
ZTTAIT(].-T)
[ 3 2
= AT z * 23 (5)

1- I 2marT(l- 1y

The exact spectrum envelope (see Eq. (1)) of a rectangular pulse with no FM
is
|G(Af, 0) | _—
’ env. TAf
For frequencies in the asymptotic region (Af >> uT >> -Tl)’ the bounds in (5)
are very tight. For example, if T = 10 psec, Af = 50 Mc, and pT = 10 Mc,

Eq. (5) becomes

-4
1 -10 |
AT = 1G(af, I\L)!env. = TAL

Thus the effect of the FM on the envelope of the spectrum is quite small in

the asymptotic region.




Note that a bound on the spectrum of any signal S(t) which is the result

of a linear operation on g(t) is easily obtained from the relation

S(f) = H(f) G(f)

This method cannot be used, however, to extend the results of this section to
other pulse shapes. For example, passing a rectangular pulse with linear
FM through a filter matched to the rectangular envelope does not give a

triangular pulse with lincar FM.

Cosine Pulse

In contrast to the rectangular pulse, the cosine pulse has no zero
rise-time and is therefore a more realistic model The envelope of the
spectrum of the cosine pulse (in the absence of FM) is found to be

2T
env . L(Z.AfT)Z ] 1‘!

-

1 GAT) |

which has a characteristic

- dependence for large £f. I one includes
T(Af)
linear FM, the spectral density is then

T IS P-L(ENIR }Zpta)
GlAf u) = S Cos - e dt
-T/2
1/2 2 [ X > X
T -12m (%) - 5 -1iem glx) + >
= - S c L + e dx
-1/

where @(x) = AfTx - %HTZXZ

Each of the above integrals is similar to the one encountered in the

X
treatment of the rectangular pulse’ BRecause of the 25 term 1n the exponents,
g P A P

10




the two integrals are evaluated along slightly different hyperbolic contours

passing through z = -é- and z =-§- in the complex z-plane. The reéult is
G(Af, p) = G_(Af,p) + G (Af, ) (6)
where
T iZ'rr(p(é-) - -ZnAnyqﬁl—% --ZFI,IT)Z+'YZyZ
Go(Af,p) = -ge ((e
o
[ 1 2 2 2 0
- e )dy + e
o
Y 1 &, .22 8% 1 AN
-Z'rrAnyq/(l+2--m) +7y -ZvAnyaﬂ+7+mT) t7y
(e - e )dy
and
% 1 2 2 2!
G, (Af,p) =i e (
1 "z ]
o 1 2 2 2
g (-7 -z&T) *7 Y
2\
-27AfTy (1 - .} +7K1f—T—)Z + %y S s
- £ — ) vy dy +e AT (
Y 1 2 2 2 =
\ﬂl'z toarrm) Y Y ©
2. 1R 2
-2mAfTy 1+ % - o) 4 7Ey° -Z‘rrAny,‘/(l + 3 ) S 4 Yy
(2 - S
Y 1 2 2 2 8% 1 2 2 2

Y ydy
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Each integrand for GO(Af p) and Gl(Af\p) is positive; thus, envelopes are

obtained simultaneously at Afn = %11_ for n-=0,1,2,... ,0. Since
[Gl(Af, p)lenv < ]Go(Af, p)lenv’ for y <1
!Go(Af H)Il b env. lGl(Af’“)lu b env i lG(Af’u)lenv
- .
- lGo(Af'H)lu b. env. * |G1(Af H)lu b. env. (7)
= 2mAfT(1 - 2 o )
|G (Af. W) zZ §2n (e z Ay
o T env Z Y
o
ZTTAfT(l‘I“’} : Yy
- Z " Zarm!Y
+e ) dy
or
2T 1
(Golal 8l ey = (2a n° |20 B4 )7 ' 21 Y )¢
' ™ fT - 1) - A (S N
2.1 2. i J
AT AfT

Using inequalities (B-1) and (B-4), it 1s possible to determine a lower

bound for the envelope in the same manner as presented for the rectangular

pulse One finds the result

l-C'o(Af u)!env. = ‘"Go(‘Af p)lu‘.b. b= 1

v

12

AT L + xpr)

(8)




To determine an upper bound for IGI(A{,p)]. let
p = 2wAfT |,

and write iGl(Af,pH as a double integral:

, | néw n2n 2
v € F oY e oy
iGl(Af,p)ienv Yl_cdy}y.(dp')'(e

Lo P
p! v(i ] *r__z—nrl )+ “232 - -
-p'y - i r .
-e Bl )t \dy“,y \ dp'y
o p
fo.y 1 2 22 1 1 2 22
- o' V‘”f‘TTT) tyy -P‘}'V(Hé*"gx-pr) try
re - - ¢ )
Exchanging the order of integration and using (73-2) and (B-1)
00 or — v R i Y 1
e oyt =g ) ey F ot
c - T , PR AR . v YW 7 AT
IGI(_&f,p)lﬁ '7-§ dp \ dy%T y (e + ¢ )
P o
o0
6wy T \ C 1 1
et ) 4R ey A T — ﬂzr)
- ZT 3-} - l l
IGI(Af’ p)lenv— Tr(ZAfT)Z (ZWZET) 21 .2 | TfI * 2(1 + 2 1 ?1_!
oo Z T ZATT Z T ZAIT |

For the case T = 10 psec, Af = 50 Mc, and pT = 10 Mc, the bounds in inequality (7)
are

1. OZS]G(Af,O)|env = |G(Af,p)|w =io3lGlanof .

Thus the FM contribution to the spectral density is again quite small for
. : 3 . I
7 = 1/5; this contribution continues to decrease as —— for a constant FM

(Af)
deviation.

13




Trapezoidal Pulse

The r=sults obtained for a general continuous piecewise linear pulse
shape (sve Appendix A) are here specialized to the case of a symmetric

trapezoidal pulse shape (Fig 2)

alt)

L

T 5 T
Tz TR
Fig. 2 Symmetric Trapezoidal Pulse

Th= general result (Eq (A-3)) is

2 -i?.mp(xk)
— < 3y :
G(Af,p) =T l..:(sk - sk_l)c (Ak+1Bk)
where
q
- /14 By
) I E \ - € dy

1 2 2
(p(xk) = (Af)T Xk = Z—LLT Xk

Sk = slope. between Xk-l and Xy

14




CC 2w AfT(] - vx

bz T/ 4 k)

and the breakpoints are at times ka. The upper bound is given by
TZ
.IG(Af:P-)I = . f IAkI + IBkI

It can further be shown that

. 1
Al = ,
K amam®a- xk)7
4
|B, | = 1
k' 2rafT)’ (1 - yxk)21
Thuse
1 1 1 1
|a(at,p) | = +
Z v, 2 I Y  y0,4
f_
L } . 1 2 1 N 1
Z pA AT 4 4
(1+35) | (2rans "o (1-3 (1-.}+3T-9
N 1 , ] - 1
(1+ 4 71—67( (1+.})4 (m A0S
1 1 21 1 1
21- 17 204 T 201t 204 )

In the absence of FM, the spectrum is

G(Af, 0) = —-;2——— sin TA{ 6 sin wAf(T - 6)

(m Af) 76

15




which is bounded by

1

|G(AL, 0)| = e
1 (m Af)7&

For T = 10 psec, Af - 50 Mc, and pT = 10 Mc, the upper bound in

Eq (9) becomes

1.032

| G(Af, p)| = —
g (mAf)76

which 1s only 3. 2 per cent higher than the upper bound in the absence of FM.

Conclusions

The results summarized below are valid in the asymptotic region of

the spectrum defined by

1
Af >> >>
f pT T

where

Af = deviation from carrier frequency,
T = pulse length,

p = frequency sweep rate,

and G(Af, p) denotes the spectrum of the pulse in question for a given value

of p

" 16




Rectangular Pulse

2 g
—e Y 0t
T T
A )
] ]
|G(at, | env TwAf -
- (3)
Cosine Pulse
3 g(t)
1
T |
B — 4 — = t
T T
a2 z
- T 1 1
| G(AL, 1) | 5 +
env AT - 1)¢ R wT
(l-m—-—m ) (1+mT——_l-
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Continuous Piecewise Linear Pulse

The s, are the slopes of the linear segments The magnitude of the

k

spectrum has the following bound

f )
1 1 2~

|G(AL, p) | = 5 — 1+ L
(2raf)” (1 - 2’-) L TAfT(L - 2’-) k

Trapezoidal Pulse (special case of a continuous, piecewise linear pulse)

\a(t)
1
T T T 1
-y -z t?d 2 -9 =
] 1 ]
| G(AS, p) | = + + of )1
‘ ! 2 2 2 ALT

eV (mAf)S s 2(1 - %) 2(1 + %) ]

18




APPENDIX A

Continuous, Piecewise Linear Pulse

The continuous, piecewise linear pui-:. g(t}), can be written
- <t <
g(t) = 8 + sk(t- tk) , for tk t tk+1 ,
where tk’ k =0, ... N are the breakpoints and 51 is the slope of the linear

segment between t, and t Outside the interval (-T/2, T/2), g(t) = 0.

k k+1"
The asymptotic region for the spectral density is defined by

1
>> —
Af pt >> T

The spectrum of such a pulse with linear FM is

X1
No1 S -12m(AfTx - é—pTZXZ)
G(Af,p) = T kZ:O \ {(gk - T Skxk) + Tskx] e dx

Xk

where x = t/T and all the x, now lie between -1/2 and +1/2. Corresponding

k
to g(t) = 0 for t outside the interval (-T/2, T/2), one may define A 0

for k=0 and k=N, s, =0 for k<0 and k= N and allow the summation

k
to extend from -« to . Let h =g - Ts x.; then

X

k1 2m(afTx - }ZpTZXZ)
G(Af,p) = T T hy X e dx
T
k
X
, ktl 2m(AfTx - }ZHTZXZ)
-T" = S)c \ xe dx
ko<
K

Summation by parts yields

19




2
-i2m(AfTx - -% pT xz)

e
I
12 2 L N
G(Af, p) = T %(sk- bk_l) ( (xk- x) e dx
¢ -1/2

After deforming the contour to that consisting of a hyperbola through

z=-1/2 and a hyperbola‘through z xk,* one finds
4 1
-12w<p(-2-)
_ : X -« i
G(Af,p) = T e | ._,(sk Sk-l)
- 00O )
™ C 2 &', ! -
X\Xk':l‘(l'ﬂﬂ”i)z“ly)'iYJt - Tt
= ! 2 2 2
o o _ﬂ/(H%) ty
2m ATy /(1 + %)2 + 20yt
X e dy

2mplx) ¢ ! — 7,2
k ( xk‘-;?(l-q/(—i-’}xk) +tyv Yy )-iy}

=

+ T2 Z(sk- sk_l)e

- 0O

e 2 2
‘ ZTTAfTY/\/(l-“,Xk) +~,“y
X Y ~ +1 e dy

where

%The contour of constant phase of the integrand is difficult to obtain. The
phase of the integrand varies ‘slowly on the hyperbolic contours.

20




and

1
= — -
E(s] - S]-l)X] -z (x] l—x])s o7 g(T) =0

k

1

Thus, letting f_= (% -3 ) 7T @ = 2mAIT(L - yx,)

G(Af, ) = T B, - s, ) e ETA) (A-1)
o8 2 22
S i + Wi+ B v~ -1)e dy
2 2" Py B
V— L+ Bky

and an upper bound is obtained by adding magnitudes

0

|G(af,p)] = T 2 |s, - s

2 2
By 1 27 " YAL+ By

] - < -
+l(_—2—_2-'+B—k—( L+By | e dy . (A-2)
1+B
U. h . l.. 1 <1
sing the inequalities r:_z—__z——— )
1/1+Bky

)
2 o Yt By -

2 2 2
l+Bky -l:Bky , and e

= e (for @ > 0)
the integrals may be evaluated with the result
2
|G(Af,p)|5 L 2-Z|sk-sk-11 {> ! + Y —7
(2mAf)° k (1-vx) TAFT(] - vx, )
L k k
1 1 2~
= 1+ N E|s - s | . (A-3)
2 -
(2raf)® (1 - 3})7 L mAfT(L- )¢ kK kel

21




The last inequality is obtained using the fact that X =1/2 and 0 = 4 <<1

1t is difficult to determine whether or not the bound (A-2) will ever
be attained in a particular example. However, one can construct a continuous
piecewisec linear pulse shape with a spectrum that attains this bound at any

given frequency Af in the asymptotic region by putting the breakpoints x

at points where the RE phase

2

1 2
(b(xk) = Afok - T

has the proper value to make the complex terms in (A-1) add in phase Thus.
while one cannot say that (A-2) is the envelope of G(Af, p) for an arbitrary
continuous, piecewise linear pulse, it is the least upper bound for the class

of pulses under consideration.

Vats




APPENDIX B

Useful Inequalities

In order to calculate the spectrum of a pulse with linear FM, the
contour -T/2 =t = T/2 is deformed into the complex plane to a sum of

contributions from hyperbolic contours. Each integrand contains the function
[z, 22
f(x,v) = e YVE TV X,y =0

where @ and 4 are positive real numbers. It will here be shown that for a

fixed value of y > 0, f(x,y) is a convex function of x for x> L oIt is

| | e
precisely this region (actually x>> —) for which several important in-
o
equalities are necessary to determine an upper bound for the spectrum under

b

consideration.

The first partial derivative of f(x,y) is

2 2 2
of(x,y) _ _ ayx Y AXT Ty
ox [2 22
Xx +v vy

which is everywhere negative in the region of interest. The second partial

derivative 1is

/2 2 2
- 2
8Zf(x,y) _ay e y o/ vy ayx xZ

+ -1

& ; 2 2 2
ox 2 2 2 / 2 7 2 x  +

Inflection points of f{x,y) as a function of x for fixed y occur at the

9%f

zeros of — .
0x

from zero to infinity, x*(y) moves from zero to —l— For x> — , y= 0,
52¢ Vo Ve

== is positive, and thus f(x,y) is a convex function of x. The important
0x

features of f(x,y) are indicated in Fig. B-1.

For x> 0 there is only one such point x*(y); as y increases

2%
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First Inequality

The first inequality is
ay af 2 + & s o
gAY A W W g GEYE Xy, a,v =0 . (B-1)

This relation is merely a consequence of the fact that the exponent is always

2 . .
negative (or zero), and neglecting the (yy) term increases the function

Second Inequality

The second inequality is

2 2 2 > 2 2 Xjtx 2 5
may /Xty —aya/ %, tyy ey Afl—s—) +7vy
e + e = 2e

(B-2)
where (Xl’XZ) is an interval in the convex region, x > _1_ ,and y = 0. In
“|bi(x, y)
the region of convexity of f(x,y), the maximum value of \—FX}Z’—Y—| in any
. _ 9f(x, y)
interval (Xl’ XZ) occurs at X0 and the minimum value of g occurs

at x,. Let x_ = é— (xl + xé) denote the center of the interval. Then, by the
mean value theorem, there are two points, Py» P in the intervals (Xl'xc)'

(Xc‘ XZ) respectively, such that

f(xl,y) = f(xc,y) + gf(j{—w’yl (xl - x)
X = p1
(xy,y) = flx_,y) + 2xy) (x, - x_)

. 2
t)f(X,Y) < O a f(X, Y) > O
T x0Tl

Since

b

25



ailx, v) - lof(x,y)
. = x :
X = p1 X = xC
and
91(x, y) _ etk y)
ox _ N x -
X=X x=Pp
One then obtains
of(x,
f(xl,y) = f(xc.y) + ——%}-{-—ﬁ (=n = xl) ,
X = x
E
of(x, y)
e, y) = g, v) - (R - x)
X=X

and adding these two results yields
(). y) + fxy,y) = 26(x_, y)

Third Inequality

The third inequality involves the difference of f(x,y) evaluated at the

ends of an interval (x, x + 6):

2, 2 2 2l 2 Z £__WZINZ
cCayalx ATy e-a\/aﬂxﬂi) et 5 e e RS

(B-3)

According to the use of the mean value theorem in the preceding

proof,
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. af(x, y)
f(Xle) = f(XC,Y) + = " p (Xl - X )
N
9f(x, y
= flx_,y) + (’;’) (x_- %))
X=p,
0 -
where p, E(Xl,xc). Since 8f(>;, y) . < ffj:{,” . ,
= P = %,
9f(x,vy)
f(xl,Y) - f(xc,y) = _.__gx_._. e (XC xl)
-7

>
X +vy

one finds

2N g 2 A 2 AR
e'a’Y/\/X Wy _e-wj(x+ 8)  +v vy Saf,yc-m/q/x il

Fourth Inequality

The final inequality involves an integral for a > 0:

¢ k n’l-+ G k! 2
I(y) = gy e” VY oy = o (- (kD (k42) L) . (B4
' @

o)

The first derivative of 1{y) is
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=] I
2 k+2 R
( e’y vt YTyT

'I'('Y):_ ) > 2‘ y
o) Z/1+’y v
= 2
b 2 k+2 - k+2)!
= _S ay'y e a/ydy-:_ .%Z__)__
g o
O

using Eq. (B-1). By the mean value theorem, there is a ¥ in the interval

(0, v) such that

I{(v) = 1(0) + 7 I'()

2 i
Since 1'(7) = - 7—&?—:-23)— throughout the interval (0,v), we find
o
Plkt2)t
, = n i
I(y) = 1(0) —;H-_Z_'
k!

Finally, since I(0) = =T the result (B-4) is obtained.
@
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